Enhancing Security through Intelligent Threat Detection and Response: The Integration of Artificial Intelligence in Cyber-Physical Systems

Authors

  • Muhammad Nur Abdul Latif Al Waro'i University of Indonesia

DOI:

https://doi.org/10.70710/sitj.v1i1.1

Keywords:

Artificial Intelligence, Cyber-Physical Systems, Cyber Security, Deep Learning, Machine Learning

Abstract

Cyber-Physical Systems (CPS) play a crucial role in critical industries such as manufacturing, transportation, energy, and healthcare by integrating the physical and digital worlds. However, the complexity and interconnectivity of CPS with the global network increase their vulnerability to cyber-attacks. This research explores the benefits of implementing artificial intelligence (AI) in the context of cyber-physical systems (CPS) to detect and respond to security threats. This study uses machine learning and deep learning techniques to analyze sensor data and system threats. The data analysis methods encompass predictive modeling and evaluating AI algorithms' performance in detecting threats. The research data is obtained from relevant literature reviews and secondary data analysis. The research findings indicate that integrating AI in CPS can enhance the success rate of threat detection, prompt response, and accuracy in threat identification. By enabling the system to learn from previous experiences, AI can reduce the number of false positives and false negatives while providing automated real-time responses to threats without human intervention. The research concludes that AI has great potential to enhance security in CPS by providing more efficient and effective solutions to address increasingly complex cyber threats. The findings of this study are expected to provide insights and recommendations that can be applied in developing CPS security systems in the future.

 

Downloads

Download data is not yet available.

References

Affan, M. (2018). The threat of is proxy warfare on Indonesian Millennial Muslims. Indonesian Journal of Islam and Muslim Societies, 8(2), 199 – 224. https://doi.org/10.18326/ijims.v8i2.199-223

Aminuddin Jafry, N. H., Razak, R. A., & Ismail, N. (2020). Dependence measure of five-minutes returns compared to daily returns using static and dynamic copulas | Ukuran Kebersandaran bagi Pulangan Lima-Minit Berbanding Pulangan Harian menggunakan Kopula Statik dan Dinamik. Sains Malaysiana, 49(8), 2023–2034. https://doi.org/10.17576/jsm-2020-4908-25

ArulRaj, K., Karthikeyan, M., & Narmatha, D. (2021). A View of Artificial Neural Network Models in Different Application Areas. In N. A., B. R., N. M., Y. S., T. D.C.W., A. N.A.B., & A. B.B. (Eds.), E3S Web of Conferences (Vol. 287). EDP Sciences. https://doi.org/10.1051/e3sconf/202128703001

Bergerson, J., & Muehleisen, R. (2015). Bayesian Large Model Calibration Using Simulation and Measured Data for Improved Predictions. SAE International Journal of Passenger Cars - Mechanical Systems, 8(2), 415 – 420. https://doi.org/10.4271/2015-01-0481

BPPTIK. (2023). BPPTIK Kementerian Komunikasi dan Informatika RI.

Burns, D. (2020). APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN CYBERSECURITY. In Software Engineering: Artificial Intelligence, Compliance, and Security.

Chanda, S. S., & Banerjee, D. N. (2022). Omission and commission errors underlying AI failures. AI and Society. https://doi.org/10.1007/s00146-022-01585-x

Chaturvedi, A., Apoorva, N., Awasthi, M., Jyoti, S., Akarsha, D., Brunda, S., & C S, S. (2022). Analyzing the Performance of Novel Activation Functions on Deep Learning Architectures (pp. 903–915). https://doi.org/10.1007/978-981-19-5482-5_76

Chen, Z., & Liu, B. (2017). Lifelong Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 89 – 103. https://doi.org/10.1007/978-3-031-01575-5_6

Choi, T., Ko, R., Saha, T., Scarsbrook, J., Koay, A., Wang, S., Zhang, W., & Clair, C. (2021). Plan2Defend: AI Planning for Cybersecurity in Smart Grids. 1–5. https://doi.org/10.1109/ISGTAsia49270.2021.9715679

Cid, M., Pérez, M., Jorquera Valero, J. M., López Martínez, A., Maestre Vidal, J., Martinez Perez, G., García, L., Plaza, F., Nespoli, P., Pastor-Galindo, J., Ramo, P., López, F., Sánchez, P. M., & Sotelo Monge, M. (2023). European framework and proofs-of-concept for the intelliGent aUtomAtion of cybeR Defence Incident mAnagemeNt. 1–2. https://doi.org/10.23919/JNIC58574.2023.10205559

Cowan, E. J. (2019). Bringing defensive artificial intelligence capabilities to mobile devices.

Crackincode.com. (2024, February). Mendekati Era Teknologi Cyber-Physical Systems: Integrasi Dunia Digital dan Fisik - TheCrackincode.

Dahiya, P. (2019). An efficient anomaly detection technique based on optimal deep learning in big data. Journal of Advanced Research in Dynamical and Control Systems, 11(6 Special Issue), 518 – 524.

Dawood, T., Chen, C., Sidhu, B. S., Ruijsink, B., Gould, J., Porter, B., Elliott, M. K., Mehta, V., Rinaldi, C. A., Puyol-Antón, E., Razavi, R., & King, A. P. (2023). Uncertainty aware training to improve deep learning model calibration for classification of cardiac MR images. Medical Image Analysis, 88. https://doi.org/10.1016/j.media.2023.102861

Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Comput. Sci. Rev., 40, 100379. https://api.semanticscholar.org/CorpusID:233547699

Dubey, A., & Rasool, A. (2022). RECENT ADVANCES AND APPLICATIONS OF DEEP LEARNING TECHNIQUE. Journal of Theoretical and Applied Information Technology, 100(13), 500 – 509.

Es-Salhi, K., Espès, D., & Cuppens-Boulahia, N. (2019). DTE Access Control Model for Integrated ICS Systems. Proceedings of the 14th International Conference on Availability, Reliability and Security. https://api.semanticscholar.org/CorpusID:199527304

Guikema, S. (2020). Artificial Intelligence for Natural Hazards Risk Analysis: Potential, Challenges, and Research Needs. Risk Analysis, 40(6), 1117–1123. https://doi.org/10.1111/risa.13476

Gupta, S., Sabitha, A. S., & Punhani, R. (2019). Cyber security threat intelligence using data mining techniques and artificial intelligence. International Journal of Recent Technology and Engineering, 8(3), 6133–6140. https://doi.org/10.35940/ijrte.C5675.098319

Huang, C., Zhang, Z., Mao, B., & Yao, X. (2023). An Overview of Artificial Intelligence Ethics. IEEE Transactions on Artificial Intelligence, 4, 799–819. https://api.semanticscholar.org/CorpusID:251174044

Jia, J., & Wang, W. (2020). Review of reinforcement learning research. Proceedings - 2020 35th Youth Academic Annual Conference of Chinese Association of Automation, YAC 2020, 186 – 191.

Kalogiannidis, S., Kalfas, D., Papaevangelou, O., Giannarakis, G., & Chatzitheodoridis, F. (2024). The Role of Artificial Intelligence Technology in Predictive Risk Assessment for Business Continuity: A Case Study of Greece. Risks, 12(2). https://doi.org/10.3390/risks12020019

Karthikeyan P., Velswamy, K., Prithivirajkumar, P. H., Ramasamy, R., Venugopal, J., & Sarveshwaran, V. (2021). Machine Learning Techniques Application: Social Media, Agriculture, and Scheduling in Distributed Systems (pp. 1396–1417). https://doi.org/10.4018/978-1-7998-5339-8.ch068

Kinyua, J., & Awuah, L. (2021). Ai/ml in security orchestration, automation and response: Future research directions. Intelligent Automation and Soft Computing, 28(2), 527 – 545. https://doi.org/10.32604/iasc.2021.016240

Kizilkan, Z. B., Sivri, M. S., Yazici, I., & Beyca, O. F. (2022). Neural Networks and Deep Learning. Springer Series in Advanced Manufacturing, 127 – 151. https://doi.org/10.1007/978-3-030-93823-9_5

Kumar, V. U., Krishna, A., Neelakanteswara, P., & Basha, C. Z. (2020). Advanced Prediction of Performance of a Student in an University using Machine Learning Techniques. Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020, 121 – 126.

Lighari, S. N., & Hussain, D. M. A. (2017). Testing of algorithms for anomaly detection in Big data using apache spark. 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN), 97–100. https://api.semanticscholar.org/CorpusID:3974844

Macukow, B. (2016). Neural networks-state of art, brief history, basic models and architecture. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9842 LNCS, 3 – 14. https://doi.org/10.1007/978-3-319-45378-1_1

Maezo, R., & Echeverría Rey, A. (2023). Boosted CSIRT with AI powered open source framework. 1–8. https://doi.org/10.23919/JNIC58574.2023.10205787

Mahajan, K., Madhavidevi, B., Supreeth, B., Lakshmi, N., Joshi, K., & Bavankumar, S. (2023). Detecting and Responding to Cloud Security Incidents based on AI and Forensic Approach. 1–6.

Moraitis, T., Sebastian, A., & Eleftheriou, E. (2018). The role of short-term plasticity in neuromorphic learning: Learning from the timing of rate-varying events with fatiguing spike-timing-dependent plasticity. IEEE Nanotechnology Magazine, 12(3), 45 – 53. https://doi.org/10.1109/MNANO.2018.2845479

Moussaoui, H., Akkad, N. E. L., & Benslimane, M. (2023). Reinforcement Learning: A review. International Journal of Computing and Digital Systems, 13(1), 1465 – 1483. https://doi.org/10.12785/ijcds/1301118

Nagendiran, S., Renugadevi, R., Kumar, R. P. A., Sasirekha, K., & Harini, R. (2023). Secure Sensitive Information on IoT using Machine Learning. International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, 360–366. https://doi.org/10.1109/ICSCNA58489.2023.10370157

Noman, N. (2020). A Shallow Introduction to Deep Neural Networks. Deep Neural Evolution. https://api.semanticscholar.org/CorpusID:219479212

Panatagama, A. (2023, June). Pengertian Cyber-Physical System dan Pemanfaatannya. https://terralogiq.com/cyber-physical-system/

Panilov, P., Tsibizova, T., & Voskresensky, G. (2024). Methodology of Expert-Agent Cognitive Modeling for Preventing Impact on Critical Information Infrastructure. In Communications in Computer and Information Science: Vol. 1986 CCIS. https://doi.org/10.1007/978-3-031-51057-1_21

Piplai, A., Joshi, A., & Finin, T. (2023). Offline RL+CKG: A hybrid AI model for cybersecurity tasks. CEUR Workshop Proceedings, 3433.

Pishgar, M., Issa, S. F., Sietsema, M., Pratap, P., & Darabi, H. (2021). Redeca: A novel framework to review artificial intelligence and its applications in occupational safety and health. International Journal of Environmental Research and Public Health, 18(13). https://doi.org/10.3390/ijerph18136705

Ramachandran, K. K., Karthick, K. K., Vinjamuri, L. P., Ramesh, R., Al-Taee, M., & Alazzam, M. B. (2023). Using AI for Risk Management and Improved Business Resilience. 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2023, 978–982.

Ramaiah, Ch., Charan, D. A., & Akhil, R. (2018). Secure automated threat detection and prevention (SATDP). International Journal of Engineering and Technology, 7, 86.

Roelofs, R., Cain, N., Shlens, J., & Mozer, M. C. (2022). Mitigating Bias in Calibration Error Estimation. In C.-V. G., R. F.J.R., & V. I. (Eds.), Proceedings of Machine Learning Research (Vol. 151, pp. 4036 – 4054). ML Research Press.

Saravanan, R., & Sujatha, P. (2018). A State of Art Techniques on Machine Learning Algorithms: A Perspective of Supervised Learning Approaches in Data Classification. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), 945–949.

Sectrio.com. (2024, April). Securing Cyber-Physical Systems | Challenges & Solutions in 2024. https://sectrio.com/blog/securing-cyber-physical-systems-in-2024/

Sen, R., & Das, S. (2023). Unsupervised Learning. Indian Statistical Institute Series, 305 – 318. https://doi.org/10.1007/978-981-19-2008-0_21

Shand, C., Fong, R., & Butt, U. (2024). How Explainable Artificial Intelligence (XAI) Models Can Be Used Within Intrusion Detection Systems (IDS) to Enhance an Analyst’s Trust and Understanding. In Advanced Sciences and Technologies for Security Applications: Vol. Part F2308. https://doi.org/10.1007/978-3-031-47594-8_17

Sinha, A. R., Singla, K., & Victor, T. M. M. (2023). Artificial intelligence and machine learning for cybersecurity applications and challenges. In Risk Detection and Cyber Security for the Success of Contemporary Computing. https://doi.org/10.4018/978-1-6684-9317-5.ch007

Soliman, H., Sovilj, D., Salmon, G., Rao, M., & Mayya, N. (2023). RANK: AI-Assisted End-to-End Architecture for Detecting Persistent Attacks in Enterprise Networks. IEEE Transactions on Dependable and Secure Computing, PP, 1–18. https://doi.org/10.1109/TDSC.2023.3338136

Stødle, K., Flage, R., Guikema, S., & Aven, T. (2024). Artificial intelligence for risk analysis—A risk characterization perspective on advances, opportunities, and limitations. Risk Analysis. https://doi.org/10.1111/risa.14307

Suppiah, K., & Arumugam, D. (2023). Impact of data analytics on reporting quality of forensic audit: A study focus in Malaysian auditors. In P. D., N. K. B., & K. V. (Eds.), E3S Web of Conferences (Vol. 389). EDP Sciences.

Tao, Z., & Chao, J. (2023). Financial Fraud and Anomaly Detection Techniques: A Literature Review. Proceedings of the 2023 4th International Conference on Computer Science and Management Technology.

Tayal, V., & Kulkarni, P. (2023). Role of Artificial Intelligence (AI) in Risk Management. AIP Conference Proceedings, 2736(1). https://doi.org/10.1063/5.0170689

Thudumu, S., Branch, P., Jin, J., & Singh, J. (Jack). (2020). A comprehensive survey of anomaly detection techniques for high dimensional big data. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00320-x

Tyas Tunggal, A. (2023, June). Apa itu Risiko Keamanan Siber? Definisi Menyeluruh | Penjaga Atas. https://www-upguard-com.translate.goog/blog/cybersecurity-risk?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=tc

Vaishampayan, S., Palshikar, G. K., Apte, M., & Attar, V. Z. (2019). Causality: An Overlooked Aspect in Anomaly Detection. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2019-October, 2413 – 2417. https://doi.org/10.1109/TENCON.2019.8929238

Wang, H., Wang, X., Wu, H., Wang, H., Zhang, L., Zhang, Q., & Wang, J. (2021). Design and research of network security threat detection and traceability system based on AI. Other Conferences.

Wang, Z. (2021). Research on Feature and Architecture Design of AI Firewall. 75–78.

Wang, Z., & Deng, Q. (2023). Research on the Application and Testing Method of AI Firewalls in Network Attack Detection. 753–757. https://doi.org/10.1109/ICCASIT58768.2023.10351578

Yasmin, J. K. (2024). Supervised Learning (pp. 69–87).

Yskout, K., Heyman, T., Van Landuyt, D., Sion, L., Wuyts, K., & Joosen, W. (2020). Threat modeling: From infancy to maturity. Proceedings - 2020 ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER 2020, 9–12. https://doi.org/10.1145/3377816.3381741

Yuhong, W., & Xiangdong, H. (2021). Industrial Internet Security Protection Based on an Industrial Firewall. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 239–247. https://api.semanticscholar.org/CorpusID:236919469

Zgurovsky, M. Z., Sineglazov, V., & Chumachenko, E. (2020). Development of Hybrid Neural Networks.

Zou, Y., Deng, W., & Zheng, L. (2023). Adaptive Calibrator Ensemble: Navigating Test Set Difficulty in Out-of-Distribution Scenarios. Proceedings of the IEEE International Conference on Computer Vision, 19276 – 19285.

Downloads

Published

2024-08-14

How to Cite

Al Waro'i, M. N. A. L. (2024). Enhancing Security through Intelligent Threat Detection and Response: The Integration of Artificial Intelligence in Cyber-Physical Systems. Security Intelligence Terrorism Journal (SITJ), 1(1), 1–11. https://doi.org/10.70710/sitj.v1i1.1

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.